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Project Overview

The laboratory has invested a significant amount of resources towards the development of
high-performance scientific simulation software, including numerical libraries, visualization,
steering, software frameworks, and physics packages. Unfortunately, because this software
was not designed for interoperability and re-use, it is often difficult to share these
sophisticated software packages among applications due to differences in implementation
language, programming style, or calling interfaces.

This LDRD Strategic Initiative investigated and developed software component technology
for high-performance parallel scientific computing to address problems of complexity, re-use,
and interoperability for laboratory software. Component technology is an extension of
scripting and object-oriented software development techniques that specifically focuses on the
needs of software interoperability. Component approaches based on CORBA, COM, and
Java technologies are widely used in industry; however, they do not support massively
parallel applications in science and engineering. Our research focused on the unique
requirements of scientific computing on ASCI-class machines, such as fast in-process
connections among components, language interoperability for scientific languages, and data
distribution support for massively parallel SPMD components.

Activities and Technical Achievements

Over the course of this project, we have investigated, developed, and demonstrated scientific
component technology in the following areas.

Babel Language Interoperability Technology

We have developed a tool called Babel that addresses language interoperability issues for
high-performance parallel scientific software. Its purpose is to enable the creation,
description, and distribution of language independent software libraries. Babel uses Interface
Definition Language (IDL) techniques. An IDL describes the calling interface (but not the
implementation) of a particular software library. IDL tools such as Babel use this interface
description to generate glue code that alows a software library implemented in one supported
language to be called from any other supported language. We have designed a Scientific
Interface Definition Language (SIDL) that addresses the unique needs of parallel scientific
computing. SIDL supports complex numbers and dynamic multi-dimensional arrays as well
as parallel communication directives that are required for parallel distributed components.
Babd currently supports Fortran 77, C, C++, Python, client-side Java, and some Fortran 90.

Web-Based Component Repository

We have developed two web-based tools to simplify the sharing of component software and
the development of community software interface standards. Alexandria is a component
repository for storing component software and SIDL interface descriptions and is being
deployed as the repository in the CCA (Common Component Architecture) community
component infrastructure. Quorum is a web-based voting server that is in use by the CCA
working group for establishing software interface standards. We have deployed both
Alexandriaand Quorum on the LLNL externally visible green network at http://www-

casc.linl.gov.
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Collaboration with hypre Scalable Linear Solvers Project

In collaboration with members of the hypre development team, we have integrated some of
the Babel language interoperability technology into hypre. The hypre library is a suite of
parallel scalable linear solvers and preconditioners. It supplies critical solver technology to
the ASCI program and is used by all three main ASCI codes at LLNL and by collaborators at
other national laboratories. In the long term, the hypre team plans to migrate to a software
architecture that uses Babel as an integral part of the library. In this design, Babd will

provide the primary interface to hypre for al languages supported by the library. This
approach provides the maximum benefit to the hypre library.

Demonstration Project in Laser Plasma Physics

In collaboration with the ALPS (Adaptive Laser Plasma Simulator) team at LLNL, we
demonstrated the use of Babel in a complex parallel simulation code. ALPS is an adaptive
mesh refinement simulation code that investigates the interaction of a laser with plasma for
inertial confinement fusion. Our modified ALPS code uses Python as a scripting language
and mixes C++, Fortran, and Python. For example, from the Python scripting layer, we can
call the application framework written in C++, which in turn calls a numerical routine written
in Fortran, which in turn calls a laser boundary condition module in Python. This

interoperability allows a scientist to rapidly prototype new boundary condition modules in
Python without recompiling or linking.

DOE Common Component Architecture SciDAC

We are collaborating on community technology standards with members of the DOE’s
Common Component Architecture (CCA) working group (see http://www.cca-forum.org/).
The DOE Office of Science has selected the CCA as one of the recipients of a SciDAC
(Scientific Discovery through Advanced Computing) award, a five-year $3.5M/yr research
effort consisting of DOE l|aboratories and academic partners intended to deliver component
technology to computational simulation efforts within the DOE. Babel plays a central role in
the CCA SciDAC center. The CCA uses the language interoperability technology developed
at LLNL as a foundation for the community common component infrastructure. Babel will
play acritical role linking SciDAC numerical and meshing libraries, typically written in C or
C++, with SciDAC applications written in Fortran 90.

Research Papers and Reports

The following four research papers and reports summarize the scope of our activities under
this strategic initiative. These papers are attached to thisfinal report.

The first paper provides an overview of the approach and technology used to develop the
Babel and Alexandria tools. This paper was an invited presentation at the 2000 Working
Conference on Software Architectures for Scientific Computing Applicationssponsored by the
International Federation for Information Processing in Ottawa, Canada.  Conference
information is available at http://www.nsc.liu.se/~boein/ifip/woco8.html. The release number
is UCRL-JC-140549.

Tom Epperly, Scott Kohn, and Gary Kumfert. Component Technology for High-
Performance Scientific Simulation Software. Working Conference on " Software
Architectures for Scientific Computing Applications’, International Federation for
Information Processing, Ottawa, Ontario, Canada, October 2-4, 2000.
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Abstract: We are developing scientific software component technology to manage
the complexity of modern, paralel simulation software and increase the
interoperability and re-use of scientific software packages. In this paper, we describe
a language interoperability tool named Babel that enables the creation and
distribution of language-independent software libraries using interface definition
language (IDL) techniques. We have created a scientific IDL that focuses on the
unique interface description needs of scientific software, such as conplex numbers,
dense multidimensional arrays, and parallel distributed objects. Preliminary results
indicate that in addition to language interoperability, this approach provides useful
tools for the design of modern object-oriented scientific software libraries. We also
describe a web-based component repository called Alexandria that facilitates the
distribution, documentation, and re-use of scientific components and libraries.

The second paper describes the use of our component technology tools in the hypre scalable
linear solvers library. This paper was presented at the 10" SIAM Conference on Parallel
Processing. The conference web site is http://www.siam.org/meetings/pp01. The release
number is UCRL-JC-104349.

Scott Kohn, Gary Kumfert, Jeff Painter, and Cal Ribbens. Divorcing Language
Dependencies from a Scientific Software Library. 10th SIAM Conference on
Parallel Processing, Portsmouth, VA, March 12-14, 2001.

Abstract: This paper describes the ideas, process, and results of the first year in an
ongoing collaboration between members of the Components Project and the hypre
Project in the Center for Applied Scientific Computing (CASC) in Lawrence
Livermore National Laboratory. The Components Project res developed a tool
caled Babel that addresses language interoperability and re-use for high-
performance parallel scientific software. Its purpose is to enable the creation and
distribution of language independent software libraries. Hypre is a parallel, scalable
scientific library of linear solvers and preconditioners. By using Babel tools on hypre
in this collaboration, we found that Babel enables better software design and is an
effective tool for producing language independent scientific software libraries at a
negligible performance overhead.

The third paper studies the performance issues associated with component technology for
high-performance scientific computing. This paper was published in collaboration with our
SciDAC co-investigators in the Common Component Architecture working group. This
paper was presented at the 2002 Workshop on Performance Optimimization via High-Level
Languages and Libraries.  Conference information is available at the web site
http://www.ece.Isu.edu/jxr/icsD2workshop.html . The release number is UCRL-JC-148723.

David E. Bernholdt, Wael R. Elwasif, James A. Kohl, and Thomas G. W. Epperly, A
Component Architecture for High-Performance Computing, in Proceedings o

the Workshop on Performance Optimization via High-Level Languages and
Libraries (POHLL-02), New York, NY. June 22 ,2002.

Abstract: The Common Component Architecture (CCA) provides a means for
developers to manage the complexity of large-scale scientific software systems and
to move toward a “plug and play” environment for high-performance computing.
The CCA model allows for a direct connection between components within the same
process to maintain performance on inter-component calls. It is neutral with respect
to paralelism, alowing components to use whatever means they desire to
communicate within their parallel “cohort.” We will discuss in detail the importance
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of performance in the design of the CCA and will analyze the performance costs
associated with features of the CCA.

The final report discusses the use of the Babel language interoperability technology in the

context of a LLNL laser plasma application. This is an unpublished technical report. The
release number is UCRL-JC-150544.

William J. Bodl, Steven G. Smith, Tamara Dahlgren, Thomas Epperly, Scott Kohn,

and Gary Kumfert. Component Technology for Laser Plasma Simulation.
September 23, 2002.

Abstract: This paper will discuss the application of high performance component
software technology developed for acomplex physics simulation development effort.
The primary tool used to build software components is called Babel and is used to
create language-independent libraries for high performance computers. Components
were constructed from legacy code and wrapped with a thin Python layer to enable
run-time scripting. Low-level components in Fortran, C++, and Python were

composed directly as Babel components and invoked interactively from a parallel
Python script.
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Abstract

Keywords:

We are developing scientific software componenttechnologyto managethe

compleity of modern, parallel simulation software and increasethe interop-
erability andre-useof scientific software packages.In this paper we describe
alanguagenteroperabilitytool namedBabel thatenableghe creationanddis-

tribution of language-independesbftware libraries using interface definition

language(IDL) techniques.We have createda scientific IDL that focuseson

the uniqueinterfacedescriptionneedsof scientific software, suchas complex

numbers densemultidimensionalarrays,and parallel distributed objects. Pre-
liminary resultsindicatethatin additionto languageinteroperability this ap-

proachprovidesusefultools for the designof modernobject-orientedscientific
softwarelibraries. We alsodescribea web-basedomponentepositorycalled
Alexandria thatfacilitatesthe distribution, documentationandre-useof scien-
tific componentandlibraries.

componentechnology languageinteroperability software repository parallel
high-performancscientificsoftware

*Work performedunder the auspicesof the U.S. Departmentof Enegy by University of California
LawrenceLivermoreNationalLaboratoryunderContractW-7405-Eng-48 Work fundedby LLNL LDRD
grant00-SI-002andthe ACTS programof the DOE Office of Science.



1. MOTIVATION

Numericalsimulationsplay a vital role asa basicresearcttool for under
standingfundamentaphysicalprocessesAs simulationsbecoméncreasingly
sophisticatecgndcompl&, no single person—orven singleinstitution—can
developscientificsoftwarein isolation. Developmenteamgarely possessuf-
ficientresourcegandscientificexpertisein all requireddomaingo successfully
createacomple applicationfrom scratch.nstead physicistschemistsmath-
ematiciansandcomputeiscientistoncentrat®ndevelopingsoftwarein their
domainof expertise.Computationascientistcreatesimulationsby combining
thesendividual softwarepieces.

In collaborationwith the CommonComponenfArchitectureforum [1], we
aredevelopingsoftware componentechnologyfor high-performancearallel
scientific computing. The goal of this effort is to improve the software de-
velopmentprocessesf scientificcodesby usingproventechniquesandtech-
nologyfrom industry Componentechnologyaddressetechnologicabarriers
to software re-useandintegration, suchasincompatibilitiesin programming
languagesinterfacedescriptionsandphysicaldeployment. By removing such
barrierscomponenapproachewill allow computationascientistdo concen-
trate on building more sophisticatechumericalsimulationsand reduceeffort
wastedntegratingincompatiblesoftware.

In this paper we describeour recentwork in two areasof componentech-
nology: languagenteroperabilityanda componentepository As partof our
languageanteroperabilityefforts, we aredevelopingatool calledBabel to en-
ablethe creationanddistribution of languagendependensoftwarelibraries.
To useBabd, library developersdescribetheir software interfacesin a Sci-
entific Interface Definition LanguaggSIDL). Babel usesthis SIDL interface
descriptionto automaticallygeneratéglue code”thatenableghe softwareli-
braryto be calledfrom ary supportedanguage.We have alsodesignedand
implementeda prototypeweb-basedepositorycalled Alexandria to encour
agethe distribution and reuseof scientific computingsoftware components
andlibraries. Alexandria providesa corvenientweb-basedielivery system
andthuslowersthebarrierto adoptingcomponentechnology

This paperis organizedasfollows. Section2 surweys componentechnol-
ogy approachefor scientificcomputinganddiscusseselatedwork. Section3
discusse®sur languagédnteroperabilityapproachmodificationsnecessaryor
the scientificdomain,the Babel tool, andexperiencesisingBabel in a high-
performancescientificsoftwarelibrary. Section4 introducesthe Alexandria
web-basedomponentepositoryandits implementatiorarchitecture Finally,
Section5 summarizeshe contritutions of this work anddiscusseduture re-
searchdirectionsfor the scientificcomponentommunity
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2. SCIENTIFIC COMPONENT TECHNOLOGY

Componentechnology25] is anextensionof object-orientedoftwaretech-
nologythatfocuseontheissuesf softwareinteroperabilityandre-use.Com-
ponenttechnologyprovides languageindependencesompilerindependence,
andseamlesaccesgo distributed objectresourcesComponentechnologyis
morethan object-orientedapproachessoftware modules,scripting[3, 4], or
softwareframewvorks|7, 8, 10, 14]; however, componentpproachesdo make
useof theseotherrelatedtechnologiesA softwareframevork maybecreated
within a componentarchitectureto addressa particularapplicationdomain.
Scriptinglanguagesnay be usedasan integrationlanguaggo connectexist-
ing softnarecomponents.

Industry hascreatedcomponentechnologyto addressssuesof interoper
ability dueto differentprogrammindanguagesthe compleity of applications
developedusingthird-party software, and the incrementalevolution of large
legag/ software. Thereare three commoncomponenttechnologystandards
in the businesscommunity: COM [12], JavaBeang24], and CORBA [19].
COM is Microsoft's componentstandardthat forms the basisfor interoper
ability amongall Windows-basedpplications.Microsoft recentlyintroduced
a new componeninitiative called.NET [18] that combinesdeasfrom COM
andJava andwill likely bethefutureof Microsofttechnology SunMicrosys-
temshasdevelopedJavaBeansand EnterpriseJavaBeans[23] basedon the
Java programminglanguage. CORBA, by the Object Managementsroup
(OMG), is a cross-platformdistributed object specificationthat supportsthe
interactionof complex objectswrittenin differentprogrammindanguageslis-
tributedacrossa network of computers.

ComponentechnologiesuchasCORBA, COM, andJaszaBeanshave been
very successfuln industry; unfortunately they aredesignedor the business
environmentanddo notaddressnary of theissuesassociateavith large-scale
parallelscientificcomputing.For example,industryapproachedonotaddress
datadistribution supportfor massvely parallelSPMD components.

We believe that a successfucomponenttechnologyfor scientific simula-
tion mustaddresgour issues:languagéanteroperability commoncomponent
behaior, physicaldeploymentstandardsand supportfor distributed parallel
communication.Thework presentedn this paperaddressesnly a smallpart
of the overall componentechnologysolution. Communitycollaboratve work
suchasthat by the CommonComponentArchitecture(CCA) [1] forum and
othersis essentialln thefollowing, we review relatedcomponentechnology
work in the scientificcommunity

Both CORBA [19] andCOM [12] addressanguageénteroperabilitythrough
theuseof aninterfaceDefinition Languag€IDL). An IDL describesheinter
faceof asoftwarecomponentisinganew descriptve languagehatis indepen-
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dentof ary particularprogramminganguage.We follow a similar approach
in our languageinteroperabilitywork, which is presentedn Section3. IDL
technologyhasthe adwantagethat,in somesenseall languagesreequal,and
ary languagemay call ary otherlanguage.The primary disadwantageof an
IDL approaclhis thatthe developermustwrite a separaténterfacedescription
of thesoftwarelibrary andthenmustfollow certainprogrammingcorventions
thatmaptheinterfacedescriptioninto the programminganguage Automatic
wrappingapproachesuchas SWIG [3] or SILOON [17] supportlanguage
interoperabilitywithout requiringa separatéDL descriptionbut aretypically
limited to the caseof a scripting language(suchasPython) calling a com-
piled languaggsuchascC or C++). In contrastIDL approacheallow method
invocationsin bothdirections.
Beyondlanguagenteroperabilitycomponenarchitecturesypically require
thatall componentsupportsomecommonsetof behaiors. Commonbeha-
iors are importantfor the discavery of componentcapabilities(e.g., “What
interfacesdo you export?”’) requiredby GUI developmenttools andproblem
solvingervironmentg6, 13, 20]. For example,the CCA specificatiorrequires
thatall CCA componentsupportthe notion of a port [1]. Portsdescribethe
interfacesusedby andprovided by acomponentOur IDL technologyplaysa
role asa mechanisnfor describingcomponenportinterfaces.
Componentproblemsolving ervironments(PSEs)may also require stan-
dardsfor describingthe physicaldeploymentof componentsoftware. For ex-
ample, CCAT [6] emplgs an XML [28] componenideployment descriptor
thatenablegshe PSEto understandomponenports,portinterfacetypes,plat-
form dependenciesndassociatedomponeninetadata.Oneof the goalsof
the Alexandria componentepositorydescribedn Section4 is to provide a
commonrepositoryfor componentescriptiongor useby toolssuchasaPSE.
Unlike industryapproachesscientificcomponentechnologymustsupport
communicatingparallelcomponentsin mosthigh-performancepplications,
componentswill communicatewithin the samememory addressspace,al-
thoughthe componentshemselesmay be distributed acrosgprocessomem-
oriesin a SPMD fashion.Someapplicationshowever, will spanmultiple par
allel computersFor example,alarge simulationrunningon thousand®f pro-
cessoramay be connectedo a visualizationcomponentrunning on a small
visualizationenginewith afew tensof processorsin this case thecomponent
architecturemust supportsomeform of paralleldataredistritution. A num-
ber of researcherbave addressethis issuefor certainlimited classe®f data
types. Both PAWS [5] and CUMULVS [16] supportparallelredistrilution of
arraysandotherpredefineddataitemssuchasparticlesor simpleunstructured
meshesPARDIS [15] andCobra[22] supportdistributedsequenceandarrays
in CORBA. We andothermembersf the CCA working groupareresearching
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approachefor extendingthis work to moregeneralscientificobjects but that
work is preliminaryandbeyondthe scopeof this paper

3. LANGUAGE INTEROPERABILITY TECHNOLOGY

Computationakcientistsdevelopinglarge simulationcodesoften facedif-
ficulties due to languageincompatibilitiesamongvarious software libraries.
Scientificsoftwarelibrariesarewrittenin avarietyof programmindanguages,
includingFortran, C, C++, or ascriptinglanguagesuchasPython. Language
differencesftenforce softwaredevelopersto generatenediating“glue” code
by hand. In the worst case,computationakcientistsmay needto re-write a
particularlibrary from scratchor notuseit atall.

We have developeda tool called Babel that addressetanguagéanteroper
ability andre-uséor high-performancearallelscientificsoftware. Its purpose
is to enablethe creation descriptionanddistribution of languagendependent
software libraries. In the following sections,we describeour interoperabil-
ity approachthe Babel tool architectureandan exampleof usingBabel in a
parallellinearalgebrasoftwarelibrary.

3.1. SCIENTIFIC IDL

Babel addressethelanguagenteroperabilityproblemusinginterfaceDef-
inition Language(IDL) techniqueq12, 19]. An IDL describeghe calling
interface (but not the implementation)of a particularsoftware library. IDL
tools usethis interfacedescriptionto generaté'glue code” thatallows a soft-
ware library implementedin one supportedanguageto be called from ary
othersupportedanguage.We have designeda ScientificInterface Definition
LanguaggSIDL) that addressethe uniqgueneedsof parallel scientificcom-
puting. SIDL supportscomplex numbersand dynamicmulti-dimensionakar
raysaswell asparallelcommunicatiordirectvesthatarerequiredfor parallel
distributed components.SIDL also provides othercommonfeaturesthat are
generallyusefulfor software engineeringsuchasenumeratedypes,symbol
versioning hamespacananagemengndanobject-orientednheritancanodel
similarto Java.

As illustratedin Figurel, SIDL bearsa closeresemblancéo CORBA and
Java. Thepackage keyword introducesanenv namespaceA namespaceay
containa class,interface,enumeratedype, or anotherpackage.Classesand
interfacescontainmethods.The methodsin aninterfaceareabstractthatis,
they arenotimplementedy theinterface.Asin CORBA, in, out, andinout
modify methodargumentsand denotethe direction of information transfer
SIDL alsosupportsJavadoc-style documentatiorcommentswhich may be
usedto automaticallygeneratéorowvsabledocumentatiorfseethe Alexandria
discussiorin Sectior4).
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version hypre 1.0;

/**

* A SIDL type description for the <em>hypre</em> library.
*/

package hypre {

/**
* <code>Vector</code> represents a mathematical vector.
*/
interface Vector {
Vector clone();
void scale(in double a);
double dot(in Vector x);
void axpy(in double a, in Vector x);
int getGlobalDimension();
int getLocalDimension() local;

/[ *%

* An <code>0Operator</code> maps one vector into another vector.
*/

interface Operator {

void apply(in Vector x, out Vector y);
}

/**

* This interface represents the class of linear mappings.
*/

interface Linear(Operator extends Operator {

}

VAL
* <code>StructVector</code> is a vector for structured grids.
*/
class StructVector implements-all Vector {
array<int> getGhostCellWidth();
}

/%%
* The structured matrix class implements all operator functions.
*/
class StructMatrix implements-all Operator {
// methods used to build a structured matrix omitted
}
}

Figure 1 A simplified SIDL interfacedescriptionfor portionsof the hypre software library
describedn Section3.3.
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The following sectionsprovide additionaldetailsconcerningsomeof the
moreuniquecharacteristicef the SIDL interfacedefinitionlanguage.

311 Symbol Versioning. In SIDL, every packageenumeratedype,

class,andinterfaceis assigneda particularversionnumber Every SIDL de-

scriptionbegins with oneor moreversion statementsEachversion state-
mentcontainsa packagenameandan arbitraryversionstring consistingof a

sequencef integersseparatety periods.All symbolswithin apackageshare
its versionnumber For example,the version statemenbn the first line of

Figurel stateghatall symbolsdefinedin the hypre packagewill beversion
1.00of thatsymbol. A version statemenis requiredfor every new outermost
packagelefinedn aSIDL description A version Statemeninayalsobeused
to give an explicit versionnumberfor resolvingexternalsymbolsreferenced
in a SIDL description. If a versionis not specifiedfor a particularexternal

symbol,thenthe mostrecentversionof thatsymbolis used.

Symbol versioningis an importantconsideratiorfor the developmentof
community-widestandardsind specifications.Considera standarde€ommit-
teethatreleasewversionl.0 of a particularspecification.Componentsvill be
written to andimplementthat versionof the standard. Whenthe committee
releasewersion2.0 of the specificationsomecomponentwill immediately
implementthe new standardwhereasotherswill take longer Versioningre-
movesambiguityaboutwhich versionof the specificatiora particularcompo-
nentimplements.

3.1.2 Import. Like Java, SIDL supportsatypeof import statement.
The import statementddsthe specifiedpackagenameto the symbolreso-
lution path. For example,a SIDL descriptionthatreferencesymbolVector
in packagehypre couldeitherusethefully qualifiednamehypre.Vector or
begin with "import hypre" andthensimply usethe namevector (assum-
ing, of course thatanotheWector did not alreadyexist in thathnamescope).
Externalsymbol referencesare resolhed by searchingan associategymbol
repositoryeitherafile repositoryor aweb-enabledepositorysuchasAlexan-
dria.

3.13 Inheritance Model. The SIDL inheritancemodelis similar to
thatof Java. SIDL supportsbothinterfacesandclasses.The methodsin an
interfaceareabstracandthusnotimplementecdy thatinterface. Themethods
in a classmay be either abstractor implementedby that class. SIDL sup-
portsmultiple inheritanceof interfacesbut singleimplementatiorinheritance
of classes An interfacemay extendotherinterfaces.A classmayimplement
mary interfacesbut extendonly oneotherclass. This inheritancemodelsim-
plifies the Babel implementationand removes the diamondimplementation
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inheritanceambiguity associatedvith C++. Like COM [12], all classesand
interfacesimplicitly inheritfrom acommonbaseinterfacethatprovidesrefer
encecountingandsimplequeryinterfacecapabilities.

Basedon suggestiongrom our userswe have augmentedhe Java inher
itancesyntaxwith an implements-all keyword, which declareghatthe as-
sociatedclassimplementsall of the methodsin the specifiedinterface. This
keyword is equivalentto usingthe implements keyword andrepeatingthe
definition of all interfacemethodsin the classbody The implements-all
shorthands cleanerandmorecloselyreflectsthe way mary of our usershink
aboutdesigningscientificlibraries. They typically defineabstractinterfaces
that describethe desiredfunctionality and then combinethoseinterfacesto-
getherinto classeandcomponentshatimplementthatfunctionality

314 Arrays. SIDL supportsthe style of dynamically-sizeddense,
multi-dimensionakrraysthatarecommonin scientificapplications.Existing
IDLs suchasCORBA [19] supportonly dynamically-sizedpne-dimensional
arrays(a CORBA sequencepnd statically-sized multi-dimensionalarrays.
Densearraysconsistof onephysicalsegmentof memorythatcanbeaccessed
efficiently by anoptimizingcompiler Sucharraysarecommonin thescientific
communitydueto its Fortran heritageandbecausealensearraysoffer better
accesperformancehan"array of array"implementations.

3.15 Parallelization Support. We have just begun to develop sup-
port for paralleldataredistribution in the Babdl tools. Therefore the follow-
ing discussiorshouldbe consideregreliminary althoughit doesindicateour
basicapproach. SIDL currently supportsparallel communicationdirectives
thatdescribemethodbehaior in a parallelexecutionervironment. For exam-
ple,thelocal methodmodifierin classVector of Figurel indicatesthatthe
getLocalDimension methodis valid only wheninvoked on anobjectin the
samememoryaddresspace.For this method,the numberof local vectorel-
ementsownedby a particularprocessohasno meaningfor a Vector object
distributedacrossa differentsetof processors.

Unlike PARDIS [15] andCobra[22], we do notintendto adddatadistribu-
tion directivesto theSIDL languageWe donotbelieve thatstaticlDL datadis-
tribution directveswill be sufiicient to describethe dynamiccompleity and
wide rangeof parallel objectsusedin scientificcomputing. Instead,we plan
to userun-time datadescriptionsof dataobjects. Distributed parallelobjects
will berequiredto supportoneof a setof datadistribution interfacesthrough
which the objectdescribests internaldatadistribution state. The Babel run-
time will usethat informationto managedataredistritution during method
invocations. We feel this approachis moreappropriatdor sophisticatedlata
decompositionshatchangeduringthe courseof a simulation.



Componenfiechnolagyfor ScientificSoftwae 9

3.2. BABEL TOOL ARCHITECTURE

TheBabel tool suiteconsistoof anumberof separat@ieces:aSIDL parser
a codegeneratgra small run-time supportlibrary, andthe Alexandria com-
ponentrepository Currently Babel supportsFortran 77, C, and C++; we
planto develop supportfor Java, Python, Fortran 90, andMATLAB in the
following year

TheBabd parserwhichis availableeitherat the command-lineor through
the Alexandria web interface,readsSIDL interfacespecificationandgener
atesanintermediateXML [28] representationXML is a usefulintermediate
languagesinceit is amenablgo manipulationby tools suchas a repository
or a problemsolving ervironment. XML interfacedescriptionsare storedei-
therin alocal file repositoryor on the web using Alexandria. Thevisionis
thata scientistdownloadinga particularsoftwarelibrary from the Alexandria
componentepositorywill receve not only thatlibrary but alsothe required
languagébindingsgeneratedutomaticallyby the Babel tools.

TheBabel codegeneratoreadsSIDL XML descriptionsandautomatically
generateglue codefor the specifiedsoftwarelibrary. This glue codemedi-
atesdifferencesamongcalling languagesindsupportsefficientinterlanguage
callswithin the samememoryaddresspaceand, eventually acrossmemory
spacedor distributed objects. The codegeneratorsreatefour differenttypes
of files: stubs,skeletons,Babédl internal representationand implementation
prototypes.The Babel internalobjectrepresentationreatecby the codegen-
eratorsis similar to thatusedby COM [12], CORBA's PortableObjectAdap-
tor [19], andscientificlibrariessuchas PETSc[2]. The internal objectrep-
resentations essentiallya table of function pointers,onefor eachmethodin
anobjectsinterface,alongwith otherinformationsuchasinternalobjectstate
data,parentclassesndinterfaces,andBabel datastructures.Stubandskele-
ton codetranslatesetweenthe calling corventionsof a particularlanguage
andtheinternalBabel representationThe codegeneratorglsocreateimple-
mentationfiles that containfunction prototypesto be filled in by the library
developers.To simplify the taskof library writers, we have addedautomatic
Makefile generatioraswell asa“codesplicing” capabilitythatpreseresold
editsduringtheregeneratiorof implementatiorfiles aftermodificationsto the
SIDL source.

3.3. TECHNOLOGY DEMONSTRATION IN HYPRE

In collaborationwith membersf the hypre developmentteam,we have in-
tegratedsomeof theBabel languageénteroperabilitytechnologyinto hypre[9].
Thehypere library is a suiteof parallelscalabldinearsolversandprecondition-
ersimplementedn C with MPI. Therewere four primary goalsof this col-
laboration. First, the Babel teamwishedto demonstratéhe technologyand
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getfeedbackirom library developers.Secondthe hypre projectneededauto-
maticallygenerate@dortran bindingsthatwould trackchangesn thelibrary.
Previously, anumberof differentFortran bindingsweredevelopedby various
usershut fell into obsolescencwith nev changego the hypre source.Third,
the hypre teamwantedto explore newv designoptionsusing object-oriented
andcomponent-basesbftwaretechniquesbut theteamhadno desireto gen-
erateandsupportthe necessargbject-orientednfrastructureny hand.Finally,
hypre developerswantedto integratesoftwaredevelopedby othergroupswho
hadwritten codein C++ andFortran.

The collaborationbegan by identifying key partsof hypre anddeveloping
anobject-orientedlesignin SIDL for the primary hypre objects.For the most
part, existing hypre implementationsverewrappedusingglue codegenerated
by the Babdl tools. In spiteof this additionalintermediateglue code,parallel
runswith both Fortran andC driversindicatethat Babel overheadsaretoo
smallto measureaccurately

The developersof hypre identified a numberof adwantageso using Ba-
bel for their scientificsoftwarelibrary in additionto the obvious advantageof
languagenteroperability Developerdoundthat SIDL wasa corvenientspec-
ification descriptionlanguagefor the designof scientific libraries becauset
eliminatedunnecessarynplementatiordetailsandforcedthemto focusonthe
object-orientediesignof thelibrary. They felt thatSIDL wasrelatively easyto
masteralthoughsomewerenew to object-orientedlesignandobject-oriented
languages.Furthermore hypre developersnoticedthat they could eliminate
redundantodeby takingadwantageof polymorphism.For example theprevi-
oushypte library containecda four differentpreconditionedonjugategradient
routines,eachwritten for a particulartype of preconditionerdatastructure.
Throughthe useof polymorphismenabledoy Babel, they wereableto reduce
the numberof routinesto one. Finally, the hypte developerswereableto ex-
ploit object-orienteddesignin €, which hasno object-orientedsupport,using
theautomaticallygeneratedBabel code.

4. THE ALEXANDRIA REPOSITORY

TheAlexandria repositorywasdesignedandbuilt to facilitatetheadoption
of componentechnologyfor high-performancescientificsimulationsoftware.
Our goalwasto provide a network servicewherecomponenteveloperscan
publishtheir softwareandinterfacedefinitionsandwhereapplicationdevelop-
erscanfind anddownloadcomponent@&ndthe associatedanguagebindings.
The systemwasintendedto have a userinterfaceto supporthumanand ma-
chineclients.

Alexandria providesahierarchicallyorganizedcollectionof softwarepack-
ageauploadedy componentlevelopersafuzzy searchcapability aninterface
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definition browser anda web userinterfaceto the Babel languagéanteroper
ability tool. For machineclients, Alexandria provides a repositoryof XML

interfacedefinitionsandwill hold arepositoryof sharedibrarieswhichimple-
mentparticularinterfacesto enabledynamicgraphicalapplicationbuildersor
otherdevelopmentools.

We choseto implementa web application(i.e., aweb sener with dynamic
contentmanageddy a program)to achieve thesegoalsandfeatures. A web
applicationcanprovide asophisticate@dndfriendly userinterfacedesignedor
humanclientsanda simple,feature-richinterfacefor machineclients. By us-
ing webtechnologieswe maketherepositorys servicesvailableto thelargest
possiblenetwork audienceary contemporaryebbronvsercanaccess\lexan-
dria. Machineclientscanusestandarchetwork librariesto accesghereposi-
tory. Othernetwork approachesvould requireinstallationof specialpurpose
clientsor moreelaborateanachineclientstherebydecreasinghe potentialau-
diencefor the service. The HTTP protocolprovidesall the transactiortypes
necessaryor therepository:uploadingfiles andotherinformationfrom a user
interfaceform anddownloadingcontent. The transactionahatureof the web
makesthe userinterfacelessinteractive thana native application but the ben-
efitsof thewebinterfaceseemto outweighthis deficieng.

As shawvn in Figure2, Alexandria usesa three-tieredarchitecture:a web
browserbaseduserinterface,a web sener with Java servlets[11] and Java-
Sener Pageg21], anda JDBC[26] connectiorto an SQL baclend. Theweb
sener deleggatesHTTP messagefor certainURLs to Java servlets,andthe
servletprovidesthe contentor an error response.A servletis a Java class
that implementsa standardinterface or overridesmethodsinheritedfrom a
standardbaseclass. The servletcanuseall the featuresof the Java platform
in generatingts response JavaSerer Pagesis a corvenient,dynamicway to
generate servletwhich usuallycombinesHTML with embeddediava code
to provide thedynamiccontent.

The Alexandria applicationconsistsof five subsystemsan accessontrol
systemaninexact string matchingpackagea hierarchymanagemengystem,
acontentpackageandaninterfaceto Babel. Theaccessontrolsystemman-
agesuseraccount@ndprovidessereraldifferentlevelsof accesso thesystem:
administratartrusteduser normaluserandworld. Theinexactstringmatching
packages a Javaimplementatiorof thealgorithmfrom agrep [30].

Thehierarchymanagemergystenprovidescataloginguploadinganddown-
loadingfeaturesUnlike anormalfile systemthehierarchycanholdfiles with
the samenamein a commondirectoryaslong asthey have differentversion
numbers.The expectationis that over time a projectwill issuemultiple ver
sionsof individual files.

Thecontentscanningpackagechecksmaterialprovided by usersto seeif it
is “safecontent. A responsiblevebsenerthatrecevescontentfromusersand
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Figure2 Alexandriaarchitecture

thenpresentshatcontentbackto otheruseramustverify thattheuserprovided
materialdoesnot containhostilescripts.Ratherthantrying to characterizend
detecthostilecontent Alexandria testsuserprovided contentagainsan XML
DTD thatcontainsasafesubsebf XHTML 1.0[27]. A validatingXML parser
is usedto determinef userprovided contentis safe. If the materialdoesnot
validate,all the mark-updirectivesaretransformedsothey will beinterpreted
asplaintext ratherthanasmark-updirectives.

The interfaceto Babel subsystenprovideslanguagebindingsfor a SIDL
file to users.Theusers SIDL file is uploadedo thewebsener, thewebsener
runsBabel on thefile, theresultsarepackagedn a TAR file, andthenthe user
is giventhechancedo downloadthefile. This saresusersrom having to install
Babel anda Java virtual machineon theirlocal machine.

Alexandria maintainsa repositoryof XML type information. Userswith
sufficient accescantranslatethe SIDL file into anequivalentXML represen-
tation anduploadthe XML representatiomo the repository Onceit is in the
repositoryaryonerunningBabe canusethe XML informationfrom Alexan-
dria ratherthan having to explicitly downloadall the neededSIDL files. In
addition,thewebsener provideshigh quality interfacedocumentatiorio web
browserby applyingXSLT [29], aevolving standardor translatingXML into
HTML or othermarkuplanguages.
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5. CONCLUSIONS

In this paper we have describedwo piecesof a componentechnologyar
chitecturefor scientificcomputing. Babel is a languagenteroperabilitytool
that usesthe SIDL interface descriptionlanguageto describecomponenin-
terfacesandto generateodethatmediatedifferencesetweerprogramming
languagesAlexandria is a web-enabledcomponentepositorythat provides
abrowsablesoftwarelibrary, automatedccesgo SIDL typeinformation,and
webaccesdo theBabd codegenerators.

Obviously, muchwork remainsin developing production-qualitycompo-
nent technologyfor the scientific computingcommunity Membersof the
CommonComponen#rchitectureworkinggrouphave madesomeinitial prog-
ressin thisdirectionandhave drafteda proposakthatcoverscommonbehaior
standard$or component§l]. A numberof interestingopenresearclyuestions
remainin extendingcurrentparalleldataredistritution approache$s, 15, 16,
22] to arbitrarydatacomponents.
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1 Introduction

In scientific programming the never-endingpushto increasefidelity, flops, and physics
is hitting a major barrier: scalability In the contet of this paper we do not meanthe
run-time scalability of codeon processorsbut implementationscalability of numbersof
peopleworkingonasinglecode.With thekindsof multi-disciplinary, multi-physics multi-
resolutionapplicationsthat are here and on the horizon, it is clear that no single code
group— nor ary singleorganization— hasall the requiredexpertiseor time availableto
independentlgreateall of thesoftwareneededo solve today’s cutting-edgeeomputational
problems.

Scientificprogrammindibrarieshave alleviatedsomeof this pressurén the past,but
scalingproblemsarebecomingncreasinglyapparentTheupshotof softwarelibrarieshas
beenthatdifferentcodegroupsin differentorganizationcanbring their expertiseto bear
on particularsub-problems. Unfortunately differentgroupsand different organizations
alsobring with themimplicit dependenciesn differentsoftware developmentplatforms,
differentprogrammingdanguagesanddifferentconceptuamodelsof the problemdecom-
position— all of which mustbe resohedif the librariesthey produceareto be usefulin a
final application. Thegoodnews is thatscientificcomputingis notalonein thesesoftware
scalabilityproblemsandseveralindustrysolutionshave provensuccessful.The badnews

*This work was performedunderthe auspicef the U.S. Departmenbf Enegy by University of California
LawrenceLivermoreNationalLaboratoryundercontractNo. W-7405-Eng-48UCRL-JC-140349

fCenterfor Applied ScientificComputing(CASC), LawrenceLivermoreNationalLaboratory

#Departmenbf ComputerScience Virginia Tech& on sabbaticaht the Centerfor Applied ScientificCom-
puting (CASC),LawrenceLivermoreNationalLaboratory
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is thatscientificcomputingis differentenoughin its naturefor an“off-the-shelf solution
from industryto not quitefit the scientificcomputingdomain.

This paperdescribeghe ideas,processand resultsof the first yearin an ongoing
collaborationbetweenmembersof the Component$rojectandthe Hypre Projectin the
Centerfor Applied ScientificComputing(CASC)in LawrenceLivermoreNationalLabo-
ratory. The Component$rojecthasdevelopedatool calledBabelthataddresseknguage
interoperabilityandre-usefor high-performancearallelscientificsoftware. Its purposeis
to enablethe creationanddistribution of languagéndependensoftwarelibraries. Hypreis
aparallel,scalablescientificlibrary of linear solversandpreconditionersBy usingBabel
tools on Hypre in this collaboration,we found that Babel enableshettersoftware design
andis an effective tool for producinglanguagendependenscientificsoftwarelibrariesat
angyligible performanceverhead.

2 SIDL

It is alreadyvery commonin scientific computingto have libraries written in different
languagesnteroperate.Considerthe commoncaseof BasicLinear Algebra Subroutines
(BLAS) written in Fortran77andinvoked from C/C++. Although vendorshave provided
customsolutionsfor this problemfor years this solutionhasscalingproblemsfor general
libraries. First, BLAS areoftentunedspecificallyfor the targetarchitecture Secondglue
codehasto be written for C/C++ to call the Fortran subroutines. Third, the Fortran77
standardloesnot definethe binary calling interfacebetweenC/C++andFortran77,sothe
wrappersarealsovendorspecific.

Many programminganguagegancall otherlanguagesbut only on a pairwiseba-
sis. Thesepairsoftenrequiresignificanteffort (meaningwrappersor “glue code”),arenot
guaranteedo be portable,andmay requirespecialinterconnectechnology Thisiis illus-
tratedin Figurel(a). For instance Matlab canbe coaxedto run anexternallibrary written
in C, but to do someanswriting specialMex-Files. GettingMatlabto run a Pythonscript
natively is anothematterentirely.

In large, multidisciplinary scientific applications,we are increasinglyobservinga
needfor truly languagandependenpiecesof software. Onecaneasilyervision anappli-
cationwith Java or Tcl/Tk graphicaldisplays,Pythonscriptsdriving the highestlevels of



logic, Fortranlinear algebraroutines,solverswritten in C, andthe adaptve meshrefine-
mentand time-steppingnanagemeninfrastructurewritten in C++. Suchan application
would be almostimpossibleusingthetechnologyrepresenteth Figurel(a).

This problemis addresseth industryusingcomponentechnologiesuchasCORBA
and COM. In both cases]anguageanteroperabilityis achieved using Interface Definition
LanguagegIDLs).

The ComponentsProjecthas designeda Scientific Interface Definition Language
(SIDL) that addresseshe particular needsof parallel scientific computing. SIDL sup-
ports complex numbersand dynamicmulti-dimensionalarraysaswell as parallelization
attributesand communicationdirectivesthat are requiredfor generalparallel distributed
datastructuresall of which arelackingfrom industryIDLs. SIDL alsoprovidesotherfea-
turesthataregenerallyusefulbut notnecessarilyelatedto scientificcomputing suchasan
object-orientednheritancemodelsimilar to Java, namespacemanagemengndinterface
versioning.

SIDL is not a “lowest-common-denominatosolution betweenprogramminglan-
guagesSIDL supportdull object-orientegorogramminggvenin nonobject-orientedan-
guages. It implementsreferencecountingand dynamictype casting,evenin Fortran77
which hasno aliasingandlimited type castingthroughequialencestatements.

3 Babel

The Babeltool suitetakesthe SIDL descriptionsand a language/platforndescriptionof
a softwarelibrary andgeneratesll of the glue-codeon demand.It consistsof a number
of interrelatedpieces:a SIDL parser a codegeneratora small run-time supportlibrary,
and a softwarerepository Currently BabelsupportsFortran77,C, and C++; efforts are
undervayto supportava, Python,Fortran90, andMatlah

The Babelparsey which is available eitherat the command-lineor througha web
interface,readsSIDL interfacespecificationsand generatesn intermediateXML repre-
sentation. XML is a usefulintermediatelanguagesinceit is amenableo manipulation
by tools suchas a web-basedepositoryor a GUI developmentervironment. XML in-
terfacedescriptionsarestorediocally or in a sharedveb-basedoftwarerepositorycalled
Alexandrid. Thevision is thata scientistdownloadinga particularsoftwarelibrary from
the repositorywill receve not only that library but also the requiredlanguagebindings
generatecGutomaticallyby the Babeltools.

The BabelcodegeneratoreadsXML files andgenerateglue codefor linking from
asoftwarelibrary to anintermediateobjectrepresentatior(IOR), andfrom the IOR to the
applicationprogrammets languageof choice(seeFigure1(b)). This glue codemediates
differencesamongcalling languagesndsupportsefficientinter-languagecalls within the
samememoryaddresspace ThelOR usedby the codegeneratois similarto thatusedby
COM, CORBA's PortableObjectAdaptor, or by scientificlibrariessuchasPETSc[2, 3].
The IOR handleghe virtual function dispatchfor all the methodsn anobject’s interface,
maintainsthe object’s statedata, and managesomeinternal Babel data structuresand
metadata.

1Also developedin the Component$roject,but beyondthe scopeof this paper
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F77 | c++ | ***| Python

official hypre Babel interface
interface (ANSI C) (optional)

hypre library

MPI

Figure 2. Theoriginal visionof hypre and Babel

4 Hypre-Babel Collaboration

Hypre[5] is a suiteof scalableparallellinear solversandpreconditionergor the solution
of large,sparsdinearsystem®f equation®ndistributed-memoryarallelcomputersThe

primaryalgorithmicemphasisn Hypreis on robustnessandscalableparallelperformance.

In addition,importantdesigngoalsfor thelibrary includeeaseof use,flexibility, therapid
incorporationof new algorithms,andcompatibility andinteroperabilitywith othersimilar
libraries. Thesegoalsandemphasearedrivenby the needsf the mostdemandingscien-
tific simulationcodesastypified by theU.S.Departmentf Enegy’sAcceleratedstratayic
Computinglnitiative (ASCI).

The collaboratiorbetweerHypre andBabelbeganby identifying four primarygoals
andavision of how the two projectsinteract. Thefour primarygoalsare:

1. TheBabelteamwantedto demonstrat¢hetechnologyandgetfeedbackrom library
developers.

2. TheHypre projecthadanimmediateneedfor automaticallygeneratedrortranbind-
ingsthatwould track changesn thelibrary. Futureneeddor bindingsto otherlan-
guageqe.g.,Python)wasconsideredxtremelylikely. Previously, anumberof dif-
ferentFortranbindingsweredevelopedby varioususerson variousplatformsbut fell
into obsolescencwith new changedo the Hyprelibrary.

3. Hypre developerswantedto integratesoftware developedby othergroupswho had
written codein C++ andFortran.

4. The Hypre teamwantedto explore new designoptionsusing object-orientedand
component-basesoftware techniquesput the teamhad no desireto generateand
supportthe necessanpbject-orientednfrastructureby hand. This includeda de-
sireto participatein the EquationSolver Interface(ESI) working group[6], which
requiresworking implementationso verify proposediesigns.

The original vision of how Babelwasto interfaceto Hypreis shawvn in Figure2. Hypre
malkesa cleardistinctionbetweertheir “official” (meaningpublishedandsupportedpro-
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interface Vector {
int  Clear();
int Copy( in Vector x );
int Clone( out Vector x );
int Scale( in double a );
int Dot( in Vector x, out double d );
int Axpy( in double a, in Vector x );

k

interface Operator  {
int  Apply( in Vector x, out Vector b );

1

interface LinearOperator extends Operator {

h

interface Solver extends LinearOperator {
int  GetSystemOperator( out LinearOperator op );
int  GetResidual( out Vector resid );

int  GetConvergencelnfo( in string name, out double value );
I3
interface PreconditionedSolver extends Solver {
int  GetPreconditioner( out Solver precond );
I3
interface RowAccess extends LinearOperator {
int GetRow( in int row, out int size,
out array<int,1> col_ind,
out array<double,1> values );
I3

Figure 3. SIDL definitionof somebasicHypre interfaces.Not all methodsare shown.

gramminginterfacein ANSI C andthelibrary properwhich wassubjectto morefrequent
changeduring the courseof research.The original expectationwasto supplyan optional
Babelinterfaceto supportotherlanguagesisthey cameonline.

Dueto theoverallsizeof Hypre,ourinitial focuswasondesigningandimplementing
a Babelinterfacefor a representatie subsef thelibrary. We developeda SIDL file that
matchedhe programmingnterfacesof this Hypre subsetvhile adheringto SIDL's object
model. We thengeneratedhe glue codebetweenHypre andthe Babel IOR, and hand-
editedtheimplementatiordetailsto finish the new language-independelirary.

SIDL's object-modefollows that of Objective-C and Java, using classesandinter-
faces For C++ programmersinterfacesaresimilar to classesxceptthatall methodsare
purevirtual, meaningthey have no implementation.In this model,a classcaninherit an
implementatiorfrom only oneclass but mayinherit multiple interfaces.Figure3 shavs a
SIDL definitionof severalkey interfacesin the Hypre objecthierarchy
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Table 1. Runtime(in secondsfor a SMG multigrid solveron a 40 x 40 x 40
structued meshwith a sevenpoint stencilon ASCI-BluePacific

| setup solution
standardHypreC interface | 8.07 43.08
standardHypreC interface | 8.07 42.96
Babel-generate@ interface | 8.09 42.45
Babel-generate@ interface | 8.05 42.76

5 Results

We arevery pleasedaindencouragety theresultsof this collaboratiorbetweerthetwo re-
searchgroups.The performancendinteroperabilityresultswerein line with expectations.
Additionally thereweresomeunexpectedresultsthatwerevery positive andconstructve.

Negligib le Runtime Overhead. Resultsof four runsof astandardHypretestproblem
arereportedn Tablel. ThetestproblemusesHypre’s SMG multigrid solver on aPoisson
equationin threedimensionsfinite-differencedn a seven-pointstencil,onauniform40 x
40 x 40 structurednesh.Thetimingsweremeasuredisingeightprocessorsn two nodes
of ASCI Blue-Pacific, a large systembasedon IBM RS/6000.Thetimesreportedarethe
sumof the times of the eight processorsMost of the manipulationthrougheither setof
interfacesis doneduringthe setupphase.The solutionphaseis practicallyentirely within
theHyprelibrary proper

It is clearto seein this examplethatthe overheadf usingthe Babelinterfaceis well
within the noiseof the system.Moreover, it is reassurindgo seethatBabelcanbe addedto
existing MPI basedSPMD codewithout ruining parallelperformance.

Reduced Code Size Through Polymorphism.  SomeHypreimplementationproved
to be unnecessargncethe SIDL definedinterfaceswere available. For example,it was
easyfor the Hypre teamto write genericimplementation®f commonsolvers. Givendefi-
nitionsof interfacessuchasVector ,LinearOperator ,andRowAccess, it is natural
to implementKrylov solverssuchasconjugategradientand GMRESin termsof thesein-
terfaces Thesesolverscanthenwork with any concreteclasseshatimplementherequired
interfaces.Thereis no longera needto write andmaintainmultiple versionsof common
solvers,onefor eachmatrix datatype.

Originally, Hypreincludedeightimplementation®f PCG(preconditionedonjugate
gradient),someof them almostidentical exceptfor how they handledthe matrix-vector
multiply, becauseof data-structuralifferences. To take advantageof Babels polymor
phismcapabilities we codeda PCG solver which exclusively usedthe Babelinterfaceto
manipulatevectors. We have Babelinterfacesfor two vectortypesso far, so this PCG
solver effectively replacestwo separatémplemenationsn the Hypre library. Likewise
Hypre developershave similarly beenableto reducethe numberof GMRES(generalized
minimal residual)solvers.
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Table 2. Runtime(in secondsfor a SMG multigrid solverona 10 x 10 x 10
structued meshwith a sevenpoint stencilon SunSpacstationUltra 10

| setup solution
standardHypre C interface 0.14 0.26
Babel-generateH77interface | 0.14 0.27

Hypredevelopersnvolvedin this collaboratiorfeel thatusingBabelwill allow users
to get the benefitsof object-orienteddesignwithout requiring object-orientedanguages
suchasC++, whichis muchlessportablethanC.

Automatic Language Bindings. Babelwasusedo generate Fortraninterfaceto the
sameHyprelibrary (whichis writtenin ANSI C). We ran someof the sametestproblems
from a Fortrandriver andobtainedthe samenumericalresultson a Sunworkstation. This
successfullydemonstrated key goalto the Hypre developers.Previous Fortraninterfaces
have requiredfrequentmaintenanceandlacked portability.

We presentin Table 2 someruntimeresultsthat againshav no real differencebe-
tweenthe performancehroughthe Hypre andBabelinterfaces.This wasdoneon a single
processoSunworkstationusinga smallerversionof the problemin the previoussection.

Hypredeveloperdnvolvedin this collaboratiorareconfidenthatanapplicationcode
written in termsof a particularsetof interfacescould useary solver or library thatimple-
mentsthoseinterfaceswith virtually no changeo theapplicationcode.Userscouldeasily
experimentwith using differentsolver libraries by simply replacingonelibrary’s imple-
mentationof therequiredinterfaceswith anothedibrary’simplementation.

Explore New Design Options. In additionto the basicHypre objectsdefinedby the
interfacesshown in Figure 3, a secondsetof interfaces,called builder interfaces,were
developedandplaysarole of increasingmportance.A builder interfaceis a setof meth-
odsfor constructingpneor more basicobjectsandfollows the Builder designpattern[7].
Thesebuildershave no concreteanalogin the Hypre library andare exclusively available
throughthe Babelinterface.A majorbenefitof thebuildersis thatusersarepreventedfrom
accessingpartially constructediatastructures.

The mostinterestingexamplesare the MatrixBuilder and SolverBuilder
interfaces.A MatrixBuilder canbethoughtof asa particularuserinterfacethrough
which usersdefine problems. Each MatrixBuilder is accompaniedy a Vector-
Builder  for building compatiblevectors.A SolverBuilder is usedto setthecompo-
nentsandparametershatdefinea Solver . Partial SIDL definitionsof builder interfaces
aregivenin Figure4.

SIDL as a Design Language. To generaténterfacecodeBabelrequiresa SIDL file
definingthe interfaces.This forcedthe Hypre developersto considerthe userinterfaceas
a separatéssuefrom theimplementationandprovided an automatednechanisnio keep
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interface MatrixBuilder {
int SetMap( in Map map );
int  Setup();
int  GetConstructedObject(out LinearOperator obj);
2
interface StructuredGridMatrixBuilder extends MatrixBuilder {
int Start( in StructGrid grid, in StructStencil stencil,
in int symmetric, in array<int,1> num_ghost );
int  SetValue( in array<int,1> where, in double value );
int SetBoxValues( in Box box, in array<int,1> stencil_indices,
in array<double,1> values );

I3
interface IIMatrixBuilder extends MatrixBuilder {
int Start( in MPI_Com com, in int m_global, in int n_global );
int  SetlLocalSize( in int m_local, in int n_local );
int SetRowSizes( in array<int,1> sizes );
int  InsertRow( in int n, in int row,

in array<int,1> cols,

in array<double,1> values );
I3
interface SolverBuilder {
int Start( in MPI_Com comm);
int SetParameterDouble( in string name, in double value );
int  SetParameterint( in string name, in int value );
int  SetParameterString( in string name, in string value );
int  Setup( in LinearOperator A, in Vector b, in Vector x );
int  GetConstructedObject( out Solver obj );
I3
interface PreconditionedSolverBuilder extends  SolverBuilder {
int  SetPreconditioner( in Solver precond );
2

Figure 4. Examplef Builderinterfacesn Hypre. Notall methodsare shown.
the codeconsistentvith the userinterfacedesign. Therewasno opportunityto clutterthe
interfacewith quick, one-timehacks. The resultwas a more stableand predictableuser
interface.

The simplicity of the SIDL file madeit the mostcorvenientlanguageor Hypre de-
velopersto useto discussuserinterfacedesign. We could limit our discussionto pure
interfaceissueswvhile remainingconfidentthatwhateverwe cameup with would be practi-
cal. SIDL wasaneasylanguageo pick upand(unlike UML) waseasyto write upin email
andsendto collaborators.

—D
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Improvements to SIDL. The Hypre interface projectalso provided useful feedback
to the Babel project. Our experiencewith practicaluse of Babelled to seseral features
andtools which now make Babeleasyto use. Onecommonmistale that was madewas
confusionover how to make a concreteclass,i.e. onefor which all the inheritedvirtual
functionshave animplementationio handlethecalls. It waseasyfor classego inheritalot
of interfacesandthewriter of the SIDL file to forgetto adda singlemethodsignaturethat
wassupposedo be implementedonly to find that Babelcreatedan abstractnot concrete
class.

To correctthe situation, SIDL wasmodifiedin two ways. First, the keyword “ab-
stract” wasaddedto classeghat may have unimplementednethods. If a methodis left
unimplementedandthe classis not declaredabstractthereis anerror. Additionally, the
keyword “implements-all’was added. If a classinherits an interfacethrougha regular
implementdirective, it overridesonly thosemethodsexplicitly mentionedn theclassdef-
inition. If theinterfaceis inheritedthroughan “implements-all’directive, all the methods
of the interfaceare expectedto be overriddenby the classandwriting the methodcall in
theclassdefinitionbecomesedundant.

Improvements to Babel Tools. Basedonobservingheuseof theBabeltoolsandin-
terviewswith theHypredeveloperdnvolved,two featuresvereaddedo improveusability:
automatiomalefile generationandpresenrationof usereditsto generateaode.

EvenonasmallSIDL file, theBabeltoolscangenerata surprisingnumberof header
andsourcefiles, oftenin variouslanguagesThe Babelcodegeneratorsveremodifiedso
that a malkefile fragmentis generatedn eachdirectorywherecodeis generated.These
malefile fragmentdefinemacroghatlist therelevantfilenamesandaresuitablefor inclu-
sioninto largermalefiles.

In additionto the gluecodethatthe Babeltoolsgeneratethey alsogeneratesocalled
Impi files with emptyfunctionbodies.Developersof new librariesmaywantto build their
implementatiordirectly in thesefiles, but developersof legagy librariesusethis asa place
to simply dereferencgointersandcall theirown code.We addedunctionalityto theBabel
tools sothatif the SIDL file waschangedncrementally theseeditsto the Impl files are
presered. Thisimprovementhassaved Hypre developersa significantamountof cut-and-
paste.

Revised Hypre Architecture . At theendof oneyearof aHypre-Babekollaboration,
anew visionis emegingabouttheHyprearchitectureasshovnin Figure5. In this new de-
sign,theHyprelibrary will dependbntheBabelruntimelibrary to provide object-oriented
supportthroughoutthe entirehyprelibrary, not just the Babelinterfaces.Additionally, all
thepublishednterfacesjncludingthe ANSI C interfacewill beprovidedwith Babel.

Thedesignin Figure5 representa major shiftin the Hyprelibrary andhasyetto be
finally decided.The Babeldevelopersare particularly pleasedhat thoughthis collabora-
tion, Hypre developershave developedso muchenthusiasnior Babeltools.
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ANSI C F77 | C++ | ®*®®| Python

Babel interface
(required)

hypre library

MPI Babel Runtime

Figure5. Therevisedvisionof hypre andBabel

6 Conclusions and Future Work

Babeldid thelanguagenterfacingjob it hadbeendesignedor, atno costto theHypreuser
andgreatadvantageto Hypre developers.The Hypre-Babelcollaborationled to improved
codesandmethodologie$or bothgroups.

In the long term, Hypre plansto increaseits relianceon the Babeltools and may
eventuallybedistributedwith pregeneratednterfacesfor severallanguagesndplatforms,
anda BabelLiteruntimelibrary. In this configuration,it is entirely possiblethatthe users
of thelibrary don't evenhaveto beawarethatthey areusingBabelaswell. Membersof the
Hypre teamalsoplanto continueparticipationin the EquationSolver Interface(ESI) [6]
working group,developingstandardgor linear solverinterfaces.

Babel continuesto mature. Work is constantlybeing doneto supportadditional
languagesand platforms. Much of the currentresearchwithin the Componentsroject
at LLNL is focusedon handlingparallelremotemethodinvocationsand dataredistriku-
tion in alanguagaéndependenmanner The Component®rojectalsomaintainscloseties
to a larger, grass-rootsnitiative calledthe CommonComponentArchitecture(CCA) Fo-
rum [1, 4]. The goal of the CCA is to bring moderncomponentechnologyto scientific
computing.TheBabeltoolsaretargetedto provide thelanguagendependenct the CCA.

As scientificapplicationdbecomeamoreinterdisciplinarythe needfor interoperability
betweendifferentlibrariesandamongpiecesfrom differentlibrariesbecomesvenmore
important.An importantquestionis how a Babel/SIDLskin caneasilybewrappedaround
existinglibraries. TheHypredeveloperdeelthatif theexistinglibrary wasreasonablyvell
organizedevenif notusinganexplicit OO language}he effort is reasonablethe runtime
costsnegligible, andthe potentialpayof in increasednteroperabilityhuge.
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Abstract

The Common Component Architecture (CCA) provides a means for developers to manage the complexity of
large-scale scientific software systems and to move toward a “plug and play” environment for high-performance
computing. The CCA model allows for a direct connection between components within the same process to maintain
performance on inter-component calls. It is neutral with respect to parallelism, allowing components to use what-
ever means they desire to communicate within their parallel “cohort.” We will discuss in detail the importance of
performance in the design of the CCA and will analyze the performance costs associated with features of the CCA.

1 Introduction

In some ways, high-performance scientific computing is a victim of its own success. The ability to simulate physical
phenomena in a scientifically useful way leads to demands for more sophisticated simulations with greater fidelity
and complexity. At the same time, the supercomputers on which such simulations are run grow ever more powerful,
but simultaneously more complex. Obtaining maximum performance from modern supercomputers requires careful
algorithm design, including management of multiple levels of the memory hierarchy. Combining the support of a
range of modern supercomputer architectures with the increasing demands from the scientific side of the problem can
lead to nearly unmanageable complexity in the software created for modern computational science.

The computer science community is exploring a variety of approaches to help alleviate some of the complexity of
large-scale scientific software. Libraries or computational engines may be created with algorithms and/or algorithmic
parameters optimized for the target computer system. While this approach focuses on performance issues, it may
also provide some help with complexity, since in many cases algorithms are abstracted and parameterized to cover
a range of computer systems. Domain-specific, high-level languages can greatly simplify the scientist’s view of the
scientific programming problem, but typically a scientist will rely on a large and complex infrastructure of libraries,
computational engines, or generated code in more traditional programming languages. This approach shifts much of
the complexity to the development of the libraries, engines, or tools, but once again to the extent these tools embody
important (often domain-specific) abstractions and generalizations, they can further reduce the complexity of the
overall software system.

*Research supported by the Mathematics, Information, and Computational Sciences Office, the Office of Advanced Scientific Computing Re-
search, and the U. S. Department of Energy under contract no. DE-AC05-000R22725 with UT-Battelle, LLC, and W-7405-Eng-48 with the
University of California. LLNL report UCRL-JC-148723



Even with the benefit of such techniques, high-performance simulation software tends to be large and complex.
Moreover, there is much “legacy” software in the scientific community which cannot, for technical or practical reasons
(i.e., time or funding), be rewritten to the extent required to accommodate these high-level approaches. Consequently,
it is valuable to look at other ways to help scientific programmers manage the complexity of their software systems.

One such approach which has become very popular and successful in other areas of computing, most notably the
“business” and “internet” areas, is component-based programming. Components may be thought of as objects that
encapsulate useful units of functionality and interact with other components only through well-defined interfaces. To
the extent that these interfaces are specified in such a way as to be broadly useful to a community (i.e., scientific
domain) rather than a specific program, the component approach can facilitate reuse and interoperability of code.
Component-based applications are typically constructed by connecting the required components together in a software
framework; creating a complex scientific application could become a matter of assembling components to express the
“physics” of the problem and coupling them with numerical solvers and other components to form the complete
software package. As component-based programming for scientific computing develops, we can anticipate that many
of the components required for a given application would already have been created by experts in the relevant domains
and made available through a component repository.

The Object Management Group’s CORBA [19], Microsoft's COM and DCOM [29], and Sun’s Enterprise Jav-
aBeans [22] are examples of very popular component environments in the business and internet areas. Visualization
systems such as Advanced Visualization System’s AVS [31], OpenDX (derived from IBM’s Data Explorer) [6], and
VTK [10] also have a component flavor to them, with the connections between components typically representing data
flow. Unfortunately, these environments do not address the requirements of high-performance scientific computing in
various ways and have seen very limited use in scientific computing. Efforts by computational scientists to develop
component environments [9, 13-16, 20, 26—-28] have been mostly focused on specific problem domains, and tend to
lack the generality and flexibility needed for use by a much broader user base.

In response to this situation, a grassroots effort was launched by researchers in several U.S. national laboratories
and universities to create a component environment suited to the general needs of high-performance scientific com-
puting. The resulting Common Component Architecture (CCA) [2] is now at the prototype stage and is being adopted
by a wide variety of scientific computing projects.

2 An Overview of the Common Component Architecture

In the design of the CCA, a number of requirements were considered:
e Performance: It should impose a negligible performance penalty.
e Portability: It should support languages and platforms of interest in scientific computing.

e Flexibility: It should support a broad range of parallel programming paradigms, including SPMD, multi-
threaded, and distributed models.

e Integration: It should impose minimal requirements for existing software to be able to participate in the com-
ponent environment.

The specification [1] developed by the CCA Forum defines:
e minimal required behavior for a CCA component,
e minimal required behavior for a CCA framework, and
¢ the interface between components and frameworks,

in such a way as to allow the above requirements to be satisfied, but, to the extent possible, without dictating specific
solutions.

At the heart of the CCA is the concept pdrts through which components interact with each other and with the
framework. Ports are merely interfaces that are completely separate from all implementation issues. They correspond
to interfacesn Java, orabstract virtual classem C++. CCA ports follow a uses-provides design pattern, so that each
component must declare what portsisesfrom others, and the ports for whichptovidesan implementation. This



typically occurs in the componentgtServices  method, which is invoked by the framework when the component
is instantiatedsetServices  is the only method a CCA component is specifically required to implement.

A CCA framework is primarily a container for components being assembled into an application, which mediates
the interconnection of ports. Its primary interaction with the component is througBdhdces interface, which
allows components to register (used or provided) ports, and to get those ports for actual use. A design goal for the
framework is to be able to cast as components even functionality that might be thought of as fundamental frame-
work services. The details of such services are still evolving to some extent, but include things like event services,
and “builder services,” which provide the capabilities to load/unload components and to connect/disconnect ports.
Currently both command-line and graphical means are provided to allow the user to assemble CCA applications.

During execution, when one component needs to use methods provided by a port on another component, it uses the
getPort method of theServices interface to obtain a reference to the port, which can in turn be used to invoke
the methods provided by the port. The using component d#asePort ~ when the port is no longer needed. The
framework, through th&ervices object, mediates the invocation of methods provided by other components and
is important in allowing the CCA to provide both high performance for “local” components and remote access in the
case of distributed components; this will be explained in more detail below.

Another aspect of the CCA is the desire to make the use of components independent of their implementation lan-
guage. To achieve this, we have adopted the Babel language interoperability tool [4]. A Scientific Interface Definition
Language (SIDL) is used to generate the necessary glue code between languages. SIDL is also used by the CCA
Forum to express the interfaces in the CCA standard. Babel currently supports C, C++, Fortran 77 (F77), Python, and
client-side Java, with support for server-side Java and Fortran 90 planned.

The CCA specifications do not dictate implementation issues, such as exactly how calls are made from one com-
ponent to another, but the model has been designed in such a way as to allow the implementation of highly efficient
methods, preserving the innate performance of the environment. It is also worth noting that the specification says
nothing specifically about parallelism. The basic philosophy in this matter is for the CCA environment to “stay out of
the way” of parallelism. Performance matters are described in more detail in the next section.

3 Performance Considerations in the CCA

3.1 The CCA Framework

The CCA's uses-provides pattern for ports, in which the framework mediates the use of one component by another,
is central to both the flexibility and performance of the model for inter-component calls. When a using component
invokesgetPort , thePort object returned by the framework might be a proxy for invocation of methods on a
remote component in a distributed computing environment. In this case, it is up to the framework to marshal and
unmarshal the arguments and make the remote invocation, and components on either end need not know they exist
in a distributed environment. Of course, distributed computing is not usually considered to be a high-performance
environment, and the CCA user creating the application is well advised to consider the frequency of use and the
volume of data transfer in ports when setting up the application in a distributed environment.

In the case that both components are localg@t®ort  call might return a reference to the actual implementation.

This is done, for example, in the prototype Ccaffeine framework [11], which focuses on supporting high-performance
parallel CCA applications and is written in C++. Components (in the form of shared object libraries) are loaded
into distinct namespaces within a single address space (process). The use of different namespaces ensures that the
components cannot interfere with each other, and the framework is the only part of the environment which can “see”

all components. Since components are all in a single address space, the framework can easily return a direct reference
to the port’s implementation frometPort . This is referred to as direct connectiorenvironment, and allows one
component to call methods on another with a cost equivalent to a C++ virtual function call — essentially, a lookup of

the method in the component’s function table, followed by invocation of that function.

SincegetPort  calls occur infrequently (they are required only once per used port), their cost is negligible. The
overhead of the CCA framework is almost entirely due to the cost of inter-component calls relative to the equivalent
calls in a native language environment. Since this overhead is on the order of the cost of a native language function
call, it will not play a significant role in a great many inter-component calls — most scientific software is designed
to put a reasonable amount of work in each function — nor will it effieth-component calls. For those rare cases
where the overhead imposed by the CCA framework is an unavoidable concern, we characterize the costs below.



3.2 Language Interoperability via Babel

With the use of Babel for language interoperability, as is now being introduced into the CCA environment, some
additional overhead is introduced. Babel uses a C-based internal object representation (IOR) to provide the glue
between different languages. In general, the overhead is roughly two subroutine calls. The client calls a stub routine
that translates the arguments into C. The stub routine calls the skeleton routine which translates the arguments into the
implementation language, and the skeleton calls the implementation. In some cases there is an additional overhead
due to data conversions between languages (especially with character strings), and with existing code, the developer
might need to insert an additional layer to adapt from the object-based representation used by Babel to the style of the
existing code. As might be expected, when reasonable amounts of computation take place in the methods called via
Babel, the overhead of the Babel system is not noticeable [21]. Obviously somewhat more care is required in using
Babel with methods that might be called a large number of times and involve little work.

Babel is distinctive from other language interoperability tools because it provides bi-directional function calls. For
example, a Python program can call a F77 subroutine that calls a C++ function that calls something implemented in
Python. This flexibility comes at a cost. The software developer must write a SIDL file to describe the interfaces that
will be accessible from multiple languages. There is also a runtime overhead that will be quantified below.

Babel was designed with the CCA in mind, but it can also be used without the CCA framework. Babel can be used
to wrap legacy applications and libraries to provide a high-level, language-independent interface. The code wrapped by
Babel can use native function calls in whatever the implementation language happens to be. When Babel is integrated
with a CCA framework, the overhead of the “full” CCA environment is equivalent to the overhead of Babel — the
framework’s virtual function call is simply carried out in the Babel environment.

3.3 Parallelism

The final performance issue, and perhaps the most important for modern scientific computing, is that of parallelism. As
noted, the CCA's primary approach to parallelism is staying out of the way of the parallelism built into the components.

In a parallel environment, the CCA framework mediates interactions between components in the same process, just
as it does in the sequential case. Interactions among parallel instances of a component in different processes (referred
to as acohori) are up to the developer of that component. Components may use whatever parallel communication
environment they prefer (i.e., MPI [5, 18, 30], PVM [7, 17], Global Arrays [12, 23, 24], shared memory), and different
components may even use different systems. The framework itself essentially does not know it is running in parallel,
apart from the need in some cases to initialize the communication system — a dependence we plan to shift into
a separate component shortly. Because the framework is, in effect, embarrassingly parallel, we will not concern
ourselves with scalability measurements in this paper.

4 Performance Measurement Techniques

To characterize the performance overheads in CCA-based environments, we measured a variety of simple subroutine
and function calls in native C, C++, and F77, in the C++-based Ccaffeine CCA framework, the C++-based omniORB
CORBA environment, and in nine language combinations using Babel (C, C++, and F77 as calling language and called
language). The functions were intended to illustrate the cost of calls passing a single variable of various data types.
The complete list of functions and the environments in which they were tested is shown in Table 1. The functions are
divided into several groups to simplify presentation and analysis of the results:

A: those for which Babel types map directly to native language types,
B: additional “simple” functions which show significantly different costs from group A in certain languages,

C: those requiring some measure of adaptation between languages in Babel and therefore show greater variation in
cost, and

D: remaining functions, mostly those which are relevant only to object-oriented environments, such as Babel and
(in some cases) C++.

Some of the function or arguments require a brief explanation:



Table 1: Measurements of function call overheads were obtained with a variety of arguments, corresponding to basic

datatypes of the languages as well as additional special types introduced by Babel. This table details the languages
and environments (Native, Babel, Ccaffeine, omniORB) in which each type was tested. Group designations are used

to simplify the analysis.

C C++ F77
Group | Function/Argument

A Double

Float

Int

Long

B no arguments

no args., returns double

C Array

Bool

Complex (by reference)
Complex (by value)

Double Complex (by reference)
Double Complex (by value)
OrderedArray

String (by reference)

String (by value)

D Char

Interface

no args. (static call)

Double (static call)
createReference/deleteReference
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e Array and OrderedArray: Babel's array object allows arrays to be declared specifically as row major or column
major (“ordered array”) or to be defined implicitly by the strides through memory. Ordered arrays require
additional checking as they are passed, and may require translation from the ordering in which they are presented
into the ordering requested by the callee. In our tests, no translation was required.

e Static calls: Tests the difference between invoking functions in their static form&lass::function() ,
rather than via an object pointer, i.ehject _ptr->function()

o createReference/deleteReference: Tests the cost of Babel's reference counting mechanisms.

In the case of native C++ and Babel, both concrete and virtual function calls were tested.

Because the total duration of an empty function call (where the function merely returns, doing no work) is so short,
our approach was to measure the cost of repeatedly calling the function within a loop relative to the cost of a matching
empty loop. We used a range of iteration counts (1,000 to 8,192,000 by factors of 2) to ensure that our measurements
scaled appropriately, and at each iteration count we took the minimum time from ten consecutive trials. While efforts
were made to minimize the interference with these timing runs by running in single-user mode with a minimum
of operating system services active, some interference is inevitable. The per-call overheads we report represent an
average over the 14 different iteration counts and we estimate that they are generally reliabdéttoBecause the
overhead of any specific application function call will depend on the function’s arguments, and our primary interest
in these timings is the costs of the CCA environmeatative tothe native language costs, we do not consider the
observed variability to be a serious issue.

Measurements were carried out on a 500 MHz Pentium IIl (Coppermine) Dell Latitude CSx laptop running De-
bian’s “unstable” GNU/Linux distribution and 2.4.18 Linux kernel. Version 2.95.4-15 of the GNU compiler toolchain
was used, along with Ccaffeine version 0.3, Babel version 0.7.1 (a prerelease of 0.7.2), and omniORB version 3.0.4.
The-02 flag was used to optimize all compiled code. Dettimeofday  system function was used for the timing.

This function returns wall clock time rather than CPU utilizationgausage does, but tests showed that despite



Table 2: Actual timings for F77 function calls and relative costs for other environments. Results represent the average
across the group or the range (minimum—maximum) where there is significant variatiob00%) within the group.

F77 C C++ BabelCtoC Ccaffeine OmniORB
Function Group Time (ns) Rel. F77 Rel. F77 Rel. F77  Rel. F77 Rel. F77
A 18 1.0 1.2 2.6 2.4 91.1
B 10-16 1.0-2.2 2.4-338 3.2-3.9 3.5 130.8
C 18 11 1.1-3.7 2.1-14.4 2.2-4.3 90.8
Overall Average 17 1.1 1.8 3.8 2.8 97.6

Table 3: Timings for Babel interlanguage function calls, relative to the Babel C to C and native F77 timings, according
to the function groupings in Table 1. Results represent the average across the group or the range (minimum—-maximum)
where there is significant variation-& 10%) within the group.

Calling Called Timing Rel. BabelCto C Timing Rel. F77

Lang. Lang. | A B C D Avg. | A B C Avg.
cC Cc 1.0 1.0 1.0 1.0 10|26 3.2-39 21-144 338
C++ C 13 1315 15-453 13-72 49|35 4058 4.0-216 6.3
F77 C 1.0 11 0.94-33.6 0.91-14 43|27 34-41 25412 73
C C++ 15 15 1.7-41.1 15-13.f 69| 39 4.7-58 4.6-57.5 122

C++ C++ 1.9 1.8 22-843 19-204108| 49 54-76 6.2-56.5 145
F77 C++ 16 15-18 1.7-709 1.8-14/510.0| 41 59 52-91.8 153

C F77 1.6 1.7 1.0-90.1 1.8 89|41 6.1 3.9-61.1 10.3
C++ Fr77 1.8 2.2 1.5-132 22-81 128| 49 7.1-83 5.8-65.6 13.3
Fr77 Fr7 1.7 16-2.1 1.0-121 18-22 122 | 4.4 6.5 4.4-103| 14.2

reporting times down to the microsecond, the Linux implementatiagetiusage had a resolution of only 10 ms,
whereas testing indicategettimeofday  provides 2us resolution.

5 Results and Discussion

5.1 Native Language Results

Table 2 displays the per-call function costs for calls in the C, C++, and F77 native language environments. Within a
language, variation among the single-argument functions is generally small. In C, we represented complex values by
structures, and when passed by value, these cost roughtymdat of the other C or F77 function calls. Also, the C
function with no arguments that returned a double cosk 2t Group A result. In C++, the function calls with no
arguments (with and without a return value), and those with boolean and string arguments, were relatively expensive,
from 2.4x—3.8x the corresponding F77 timings. The C++ results shown are for concrete function calls; virtual calls
are uniformly twice as expensive, and because of its implementation, are represented by the Ccaffeine results.

5.2 Babel

Table 3 shows the costs of various interlanguage calls within the Babel environment. Because there are a number of
function calls possible in the Babel environment that are not possible in the native environment, we present results
relative to both native F77 and the Babel C to C timings. All results are for concrete function calls. Virtual function
calls in Babel have essentially the same cost, .@2 concrete call, averaged over all functions and all language
combinations. Given the significant variations seen in some of the timings, the overall averages presented can be
considered only as a very rough guide for comparisons — it is important to consider both the languages involved and
the function arguments when comparing Babel results.



Table 4. Costs for individual Group C functions (see Table 1) for various language combinations in the Babel envi-
ronment. Costs are relative to the Babel C to C results. For each column, the top labelabitigdanguage and the
bottom label is thealledlanguage.

C C++ F77 C C++ F77 C C++ F77

C C C C++ C++ C++ F77 F77 F77
Argument Time (ns) Time Rel. Babel Cto C
Array 44.3 38 10 87 114 87 16 46 1.8
Bool 43.7 25 19 22 33 27 24 35 30
Complex (by value) 49.8 15 12 17 23 19 16 40 15
Double Complex (by reference) 450 30 11 23 58 31 16 40 15
Double Complex (by value) 573 | 22 094 19 35 17 16 33 15
OrderedArray 255 15 10 17 22 17 10 15 10
String (by reference) 438 | 453 336 411 843 709 901 132 121
String (by value) 39.0 19 195 273 26.8 435 29.0 315 49.2

We can see that calls involving C tend to be the least expensive. This is not surprising, given Babel’s interal object
representation is implemented in C. Calls involving C++ tend to be the most expensive, because Babel tries to provide
arguments as close as possible to the native language form, and C++ requires the most adaptation. We see that Group
A and B functions are generally fairly consistent in cost across the various language combinations, atxnibet €.2
to C cost. Groups C and D show rather large variations in timing and are largely responsibly for driving up the overall
average figures. In analyzing the relative costs of functions in Group C especially, it is important to consider them
individually — the overall averages, or even the Group C ranges given, can be no more than a very rough guide.

Table 4 shows details of the costs of Group C functions. The most striking feature of these results is tremendous
variation in the cost of passing strings, either by value or by reference. This is because in most cases, Babel must
allocate new space (viaalloc ) and copy the string as part of adapting it from one language to the other. Most other
functions show trends much more in line with the results for Groups A and B, though there are certain cases where the
required adaptations are somewhat more expensive.

It is also worth noting that, thus far, development of Babel has focused almost entirely on correctness of the im-
plementation and on expanding the base of languages supported — little effort has gone into optimization. Therefore,
we can anticipate improvements in some of these results.

5.3 Native Languages, CCA, and CORBA

In addition to the native language results previously discussed, Table 2 shows the cost of various function calls in
the Ccaffeine CCA framework, the Babel environment calling from C to C, and the omniORB CORBA framework
relative to the native F77 timings.

As previously noted, an inter-component function call in a direct connect CCA framework, such as Ccaffeine, is
equivalent to a C++ virtual function call. The cost is roughly>2 e cost of a native F77 function call.

Taking full advantage of the CCA environment — using Babel integrated into a CCA Framework — calls would
incur the cost of a virtual function call in the Babel environment, which is practically identical to the cost of a concrete
function call.

To gauge the cost of the CCA environment relative to a typical CORBA environment, we also present timings for
same-process calls using omniORB. Timings were quite consistent within each group, and the overall average is that
the CORBA calls take 976 a native F77 call. This is 34:9the cost of calls in the Ccaffeine CCA framework, and
roughly 25.% the cost of the stand-alone Babel or full CCA (Babel integrated into a framework) environments.

As discussed earlier, these overheads will noticeably effect only the small fraction of functions which are called
many times and contain very little work. These results can be used by software architects and component developers
to help gauge which functions, if any, are likely to require special consideration in the design of their interfaces. A
variety of options are available, depending on the specific situation. For example, if performance is more important
than language interoperability, it may be desirable to eliminate the Babel layer for selected component interfaces. If
there is flexibility in the overall architecture, it might be modified to make the sensitive function calls intra-component
rather than inter-component, thus eliminating the framework overhead. It is worth noting that CORBA does not



provide this kind of flexibility to developers.

6 The Future of the CCA

The CCA is currently at the stage of a highly functional prototype environment. The specification is nearly complete
and is more than adequate to enable serious scientific simulations to be developed. A number of prototype frameworks
exist, each focusing on different environments (i.e., parallel, distributed, etc.). A variety of mini-applications have
been demonstrated using these frameworks, abstracted from real scientific simulations [25], and more than 15 groups
have already adopted the CCA as the basis for new terascale scientific simulations which are now under development.

Development of the CCA continues and is accelerating, thanks especially to the formation of the Center for Com-
ponent Technology for Terascale Simulation Software (CCTTSS) [3] with funding from the U. S. Dept. of Energy’s
Scientific Discovery through Advanced Computing (SciDAC) initiative [8]. The CCTTSS, a subset of the CCA Fo-
rum that includes participants from six national laboratories and two universities, carries out research in component
technology for high-performance computing and will develop the CCA into a full production-quality environment.

One focus area of the Center is the development of a suite of components based on popular numerical and other
libraries in order to “seed” the development of a component-rich environment. Related to this is the the development
of domain-specific “standard” interfaces to facilitate the creation of reusable and interoperable components. As such
activities are best undertaken by experts in the relevant domain, the role of CCTTSS and the CCA Forum is primarily
to encourage and promote the formation of communities around such efforts. Efforts are already underway to develop
interfaces for basic scientific data objects, such as distributed arrays, structured and unstructured meshes, and adaptive
mesh refinement.

Another focus of the CCTTSS, and one with more performance considerations, is the development of general
interfaces and tools for parallel data redistribution, especially for the case of coupling parallel models running on
differing numbers of processors. While the initial implementation of this capability will be based on components,
there is longer-term interest in doing this at the framework level through more expressive interfaces able to capture the
desired parallel semantics, leading to what might be tenpaedllel remote method invocation

7 Conclusions

The CCA provides a means for developers to manage the complexity of large-scale scientific software systems, and
to move toward a “plug and play” environment for high-performance computing. The CCA model allowdifecia
connectionbetween components within the same process, maintaining performance on inter-component calls. It is
neutral with respect to parallelism, allowing components to use whatever means they desire to communicate within
their parallekcohort The current prototype CCA environment is being used to create serious scientific simulations, and
is also being refined toward production quality. Performance concerns will continue to be central to the development
of the CCA.
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ABSTRACT

This paper will discuss the application of high performance
component software technology developed for a complex physics
simulation development effort. The primary tool used to build
software components is called Babel and is used to create
language-independent libraries for high performance computers.
Components were constructed from legacy code and wrapped
with a thin Python layer to enable run-time scripting. Low-level
components in Fortran, C++, and Python were composed directly
as Babel components and invoked interactively from a parallel
Python script.

Categoriesand Subject Descriptors
D.2.12 Poftware Engineering]: Interoperability — distributed
objects, interface definition languages.

General Terms
Algorithms, Performance, Languages

Keywords

Components, scientific computing, numerical methods, physics.

1. INTRODUCTION

The scientific computing community has invested a significant
amount of resources towards the development of high-
performance scientific smulation software, including numerical
libraries, visualization, steering, software frameworks, and physics
packages. Unfortunately, because this software was not designed
for interoperability and re-use, it is often difficult to share these
sophisticated software packages among applications due to
differences in implementation language, programming style, or
caling interfaces. It is highly desirable to be able to reuse large and
complicated software packages without having to dwvote large
amounts of time to re-engineer them [1]. Moreover, many of the
simulations that are required today involve multiple physical and
chemical processes, so-called multiphysics smulations. Building
these codes from pre-tested software components is much more

reliable and efficient than trying to build a complete simulator
from scratch [2].

One example of a complicated multiphysics simulation problem is
the interaction of lasers with plasmas. Simulation of laser plasma
interaction is an important design tool, complementing theoretical
analysis and experimentation for developing complicated laser

tools for studying inertial confinement fusion. The software
required for simulating these complex physical processes reflects
the physica system: it is complex. To carry out numerica

experiments and analyze the resulting computational data, the
software must be flexible enough to allow scientists to quickly and
easily compare competing physics models and alternative design
strategies. Constructing complex smulation codes from available
software components is an efficient strategy for building a new
laser plasma simulation code.

In this paper, will present our experiences wrapping a large
scientific smulation code using the Babel language interoperability
tool [8] so that the application could be driven from the Python
scripting language. Furthermore, we were able to freely mix C++,
Fortran, and Python modules in the software. For example, from
the scripting layer, we were able to call the application code in
C++, which in turn called a numerica routine written in Fortran,
which in turn called a bounary condition routine written in
Python. This language interoperability enabled us to rapidly
prototype new boundary conditions modules in Python without
recompiling or linking the whole code. We discovered that
compiler incompatibilities introduced some difficulties in code
reuse. This problem is ubiquitous and is not limited to the Babel
tool. We will discuss the trade-offs using a tool such as Babel as
compared to amore traditional wriapping solution such as SWIG.

2. ALPS: Adaptive Laser Plasma Simulator

The ability to predict and control laser-plasma interactions is
critical for the design of inertial confinement fusion (ICF)
experiments. ICF involves the use of high powered lasers to
rapidly ionize and compress hydrogen fuel pellets sufficiently to
initiate a fusion reaction. During these experiments, a plasmafilled
region is created by the ionizing fuel. The laser must continue to



propagate through the plasma region to achieve the desired
distribution of energy at the target fuel pellet. Simulation of the
laser plasma interactions is used to predict and control laser
parameters for | CF experiments.

The Adaptive Laser Plasma Simulator (ALPS) project [3] is being
developed using the SAMRAI (Structured Adaptive Mesh
Refinement Applications Infrastructure) [4,5] system currently
under development in CASC. SAMRALI isa C++ class library that
supports the development of application codes utilizing
structured adaptive mesh refinement (AMR)  agorithms.
Parallelism on distributed memory architectures is handled by the
framework, freeing the user from most of these details. Data
layout and interprocess communication is performed through an
interface to the standard Message Passing Interface (M PI) library.

3. Component Softwar e Technology

Component technology is an extension of scripting and object-
oriented software development techniques that specifically
focuses on the needs of software re-use and interoperability.
Component-based software techniques address issues of language
independence and component connection behavior that other
software techniques do not address. To use a hardware analogy, a
component is like a "software integrated circuit" with well-defined
pin-outs that may be connected to compatible pins on other
"software integrated circuits." Figure 1 is a cartoon illustration of
how we used Babel as the backplane to connect software
components together to create an application.

3.1 Commercial solutions

Component approaches based on CORBA [9], COM [12], and
Java technologies are widely used in industry but will not scale to
support large parallel applications in science and engineering. Our
research focuses on the unique requirements of scientific
computing on high-performance machines, such as fast in-process
connections among components, language interoperability for
scientific languages, and data distribution support for massively
parallel SPMD components.

3.2 Babel

Babel is a language interoperability tool that uses a Scientific
Interface Definition Language (SIDL) to describe component
interfaces. Using SIDL descriptions, Babel automatically generates
code to mediate differences between components written in
different languages.

Computational scientists developing large simulation codes often
face difficulties due to language incompatibilities among various
software libraries. Scientific software libraries are written in a
variety of programming languages, including Fortran, C, C++, or a
scripting language such as Python. Language differences often
force software devel opers to generate mediating glue code by hand.
In the worst case, computational scientists may need to re-write a
particular library from scratch or not use it at al. We have
developed a tool caled Babel that addresses language

interoperability and re-use for high-performance parallel scientific
software. Its purpose is to enable the creation, description, and
distribution of language independent software libraries.

Babel addresses the language interoperability problem using
Interface Definition Language (IDL) techniques. An IDL describes
the calling interface (but not the implementation) of a particular
software library. IDL tools such as Babel use this interface
description to generate glue code that allows a software library
implemented in one supported language to be caled from any
other supported language. We have designed a Scientific Interface
Definition Language (SIDL) that addresses the unique needs of
paralel scientific computing. SIDL supports complex numbers
and dynamic multi-dimensional arays as well as pardle
communication directives that are required for parallel distributed
components. SIDL aso provides other common features that are
generally useful for software engineering, such as enumerated
types, symbol versioning, name space management, and an object-
oriented inheritance model similar to Java.

The Babel parser, which is available either a the command-line or
through the Alexandria web interface, reads SIDL interface
specifications and generates an intermediate XML representation.
XML is a useful intermediate language since it is amenable to
manipulation by tools such as a repository or a problem solving
environment. XML interface descriptions are stored either in a
local file repository or on the web using Alexandria. The vision is
that a scientist downloading a particular software library from the
component repository will receive not only that library but also
the required language bindings generated automatically by the
Babel tools.

The Babel code generator reads SIDL XML descriptions and
automatically generates glue code for the specified software
library. This glue code mediates differences among calling
languages and supports efficient inter-language cals within the
same memory address space and, eventually, across memory
spaces for distributed objects. The code generators create four
different types of filess stubs, skeletons, Babel internal
representation, and implementation prototypes. The Babel
internal object representation created by the code generators is
similar to that used by COM, CORBA's Portable Object Adaptor,
and scientific libraries such as PETSc. The internal object
representation is essentially a table of function pointers, one for
each method in an object's intaface, along with other information
such asinternal object state data, parent classes and interfaces, and
Babel data structures. Stub and skeleton code translates between
the caling conventions of a particular language and the internal
Babel representation. The code generators aso create
implementation files that contain function prototypes to be filled
in by the library developers. To simplify the task of library
writers, we have added automatic Makefile generation as well as a
code splicing capability that preserves old edits during the
regeneration of implementation files after modifications to the
SIDL source. Finaly, the run-time library provides genera
services such as reference counting and dynamic type



identification. In the future, we expect to support dynamic loading
of objects, reflection, and a dynamic invocation interface.

4. PyALPS

Currently, our laser plasma simulations are carried out using a
uniform rectangular grid. This prohibits the use of high resolution
in the regions of greatest interest by requiring a uniform grid over
the entire domain. However, the code currently used for laser-
plasma simulation is highly developed as a scientific and
engineering design tool. In particular, an in-house scripting
language called Yorick [11] is used br interactive steering and
control of laser calculations. Yorick is an interpreted programming
language, designed for postprocessing or steering large scientific
simulation codes. Smaller scientific simulations or calculations can
be written as standalone yorick programs. The language features a
compact syntax for many common array operations, so it
processes large arrays of numbers very efficiently.

4.1 Scripting

For use as a scientific and engineering design tool, ALPS requires
the run-time flexibility of a scripting language, such as the Yorick
capability that current laser physicists are accustomed to having.
We adopted Python as a scripting language because it has a large
and growing scientific user base and has a parallel implementation.

Since detailed simulations of laser plasma interactions can
consume many hours of supercomputer time, it is often desirable
to do calculations with either limited spatial resolution or a small
number of time steps, then look at the results and determine
whether some adjustment of the parameters is needed before
continuing on with a lengthy calculation. Similarly, short period
simulations may be used to examine the effects of parameter
variations. Scripting enables laser scientists to perform simulations
in a controlled fashion to maximize the amount of information that
can be obtained in a limited time [8]. It also alows a great deal of
flexibility by alowing different or new physics modules to be
invoked quickly and easily. Scripted codes can be run interactively
or in batch mode, giving the user considerable flexibility over a
simulation.

We have used Babel to develop a scripted version of ALPS that
uses Python as the scripting language. Wrapping parts of the
ALPS code using Babel enables the creation of plugn-play
modules in a variety of supported languages. From the highest
level at which users interact with pyAlps, the ALPS application
appears to be a Python package, consisting of pure Python
modules. that enables application users to compare ALPS results
against those produced by an existing computational tool. The
scripted interface will also alow ALPS users to interact with a
running simulation to visualize data on-the-fly. This collaboration
is the first to demonstrate Babel's applicability in a large-scale
scientific application.

One of the primary goals of creating a scripted version of ALPS
was to enable users to run ALPS interactively. Babel was used to

create thin Python wrappers for important capabilities in the
ALPS code. Specifically, we wrote interface fles with Babel's
Scientific Interface Definition Language (SIDL), which is similar to
the IDL interface used to write CORBA interfaces. The SIDL file
is a language-independent, object oriented description of the
attributes (member variables) and methods associated with
interfaces and classes. Babel uses the information in the SIDL file
to create language bindings for any of the supported languages.

An example of a SIDL file is shown here. It contains class
definitions for the basic Alps class and for beam modules, which
compute the energy intensity contained in alaser beam. The SIDL
file is used by the babel software to generate client-side and
server-side code, each in a specified language. For the Alps class,
the client is written in Python and all relevant files are presented
to the user as the pyAlps package. Once imported as a Python
package, an Alps class is created and methods can be invoked.
After initialization from an input file or restart data file, the user
may invoke several different run options in order to control time
stepping precisely. Visualization files can be written at any point
after the simulation has run to the currently-specified time and
viewed using visualization software. Parameters can be adjusted
using Python-wrapped database nanipulation methods for the
input variables.

The following code is an example of a SIDL file for the pyALPS
package. Babel uses the information in this file to create glue code
in any of the supported languages to wrap each of the specified
objects.

version pyAlps 0.1,
package pyAlps {
class Alps {
void initialize(in pySAMRAI.InputDatabase database);
void initializeFromRestart(in string dir, in int num, in
pySAMRAI.InputDatabase database);

double run(in double time);
double runToFinish();
double runTo(in double time);
double step(in int num_iter);
double stepTo(in int iteration);
void writeRestart(in string fname, in int seq_num_ext);
void writeVis(in string fname, in int seq_num);
void finalize();

abstract class Beam {
abstract void setBeamO(inout array<dcomplex,2> amp);
final void setDopplerShift(in double a_doppler_shift);
final double getDopplerShift();
final void setCenter(in array<double,1> a_center);
final void getCenter(out array<double,1> a_center);
final void setMaxIntensity(in double a_intensity);
final void getMaxIntensity(out double a_intensity);

dass Cos2_Beam extends Beam {

void setBeamO(inout array<dcomplex,2> amp); }
class SphericalCos2_Beam extends Beam {

void setBeamO(inout array<dcomplex,2> amp); }



class Gaussian_Beam extends Beam {

void setBeamO(inout array<doomplex,2> amp); }
class SuperGaussian_Beam extends Beam {

void setBeamO(inout array<dcomplex,2> amp); }

}

In particular, note that the beam class is declared to be an abstract
class. This means that at least of the member functions of the
beam class is abstract and is not defined within the beam class.
Subclasses of the genera beam class must define a setBeamO
method. The abstract beam class a so declares a number of member
functions that will be explicitly defined in the implementation of
the beam class. These member functions are common to all
subclasses of the beam module, although they may be substituted
with new functions in subclasses. Babel can create Beam modules
in any of the supported languages, currently including F77,
Python, C, and C++ from the SIDL file.

Our initial task was to decompose the ALPS code into
components that were appropriate for run-time scripting. The
primary tasks performed in the monolithic code were to read and
process input data, initialize data structures, loop through a
specified time loop, and output data at regular intervalsin thetime
loop. These code segments formed the basic components that
were to be controlled from the script.

The ALPS code simulates the interaction of a set of laser beams
with a dasma in space and time. The computational grid is a
sophisticated adaptive, multilevel grid that is required for high
resolution. Often, run-time parameters for the complex simulation
runs are not know precisely. Scientists needed a simulation tool
that ould be run a certain number of time steps, stopped and
queried using visualization tools to inspect intermediate field
variables, then modified by changing certain key parameters and
run forward in time for a fixed interval again. This gave the
scientists a steering capability through Python scripting.

A parallel version of Python, pyMPI, developed at LLNL and
available publically through SourceForge [12] was adopted for
Python scripting. ALPS is built using the SAMRAI framework
for adaptive mesh simulations on parallel machines, together with
legacy Fortran code obtained from laser physicists. Linear solvers
from the PETSc library and HYPRE are available through the
SAMRAI framework and invoked for solving linear systems.
Babel was able to generate code to glue together all these packages
in appropriate components. Of particular note was the
decomposition of SAMRAI into components for data I/0 and
mesh initialization. From the scientist’s view, pyALPS looks like
anormal python script. An example of a pyALPS script is shown
here:

import sys

import pySAMRAI.InputDatabase

import pySAMRAI.Alps

# Create the input database

inputdb = pySAMRAI.InputDatabase.InputDatabase()
inputdb.initialize("ALPS")
inputdb.parselnputFile("alps.input™)

# Create alps object and initialize the state
alps = pySAMRAI.Alps.Alps()
alps.initialize(inputdb)

# Change some values

griddingdb = inputdb.getDatabase("GriddingAlgorithm")
print("Old efficiency_tolerance = %f" %
griddingdb.getDouble("efficiency_tolerance™))
print("Old combine_efficiency = %f" %
griddingdb.getDouble("combine_efficiency™))
griddingdb.putDouble("efficiency_tolerance", 0.90)
griddingdb.putDouble(*combine_efficiency”, 0.90)
print("New efficiency_tolerance = %f" %
griddingdb.getDouble("efficiency_tolerance™))
print("New combine_efficiency = %f" %
griddingdb.getDouble("combine_efficiency™))

# Step 5 time steps ...

alps.Step(5)

# ... then do something with the data!

# Run to the end specified in the input file
alps.runToFinish()

# Finalize everything

alps.finalize()

One of the primary difficulties encountered in this project was
related to the need to create dynamic libraries for run-time loading.
Incompatible compiler options seemed to cause the most build
problems. During the integration process the low level details of
simply building the code caused an unexpected number problems.
Severd of the packages we were integrating had not been compiled
as ashared library before. This mandated a reworking of the build
systems in order to support the necessary compilation steps.
While this was expected, the brittleness of the build process was
not. We found that even slight variations in the compiler options
used to compile each package could cause link or runtime failures.

The runtime failures in particular are troublesome since a method
invocation would fail in a system library for no obvious reason.
To overcome this we standardized on a set of compilers and
compile flags for al packages. While this is a smple (and
obvious) solution, it is not a satisfactory solution if the goal isto
have a large set of easy to use components for widespread use.
Given the target audience for a scientific component architecture
contains developers for whom dynamic linking will be a new
experience, these types of problems could pose a barrier for
software reuse, especialy for software in object or component
form. The component software community may need to move
towards some kind of compiler metadata for packages or
something else to facilitate mixing of binary libraries, especialy
with C++.

Creating SIDL files needed to wrap each of the componentsisisa
little tedious, but is relatively straight-forward. We did not find
thisto be a particularly difficult issue.



4.2 Plug and Play Modularity

In addition interactive control of simulations, the capability of
easily swapping in alternative physics modules is a desirable new
feature for laser plasma simulations. Scientific investigation using
simulation often involves testing and comparing alternative
physics modules or new agorithms. Our goal was to enable rapid
replacement of classes, subroutines, or groups of related classes
and subroutines with alternatives.

To do this, appropriate pieces of code were wrapped using Babel
and made into Babel components. These components can be
accessed hy driver routines written in any of the Babel supported
languages. Alternative components can then be written by
application scientists in any language that's convenient and
wrapped with Babel to make an alternative component that can be
seamlessly interchanged with the original component. Because the
application scientist is free to implement new components in a
language such as Python, new algorithms can be written quickly
and tested in the pyALPS code. Important components can be
optimized in another programming language later if desired.

One of the novel and powerful capabilities provided by Babel
components is the ability to call any of the supported languages
from any other. Thus, not only can Python call C or Fortran
subroutines as, for example, SWIG extensions to Python, but
Fortran can aso call Python functions. We used this feature to
create a powerful plug and play capability for scientific
exploration of new beam modules.

4.2.1 Beam Modules

In the ALPS code, beam calculations are invoked from within the
legacy Alps code. The originad beam subroutines are written in
Fortran and are caled from Fortran subroutines, which are
originaly invoked from the Alps C++ driver code. Using the
SIDL file shown above for the Beam class, we made Beams a
component of the system and modified the ALPS driver to call
Beam components rather than the origind embedded Fortran
subroutines. Beam modules clients were created in Fortran using
Babel to enable us to use the original Fortran beam calculations.
Once this was done, we also created Python beam clients to
demonstrate this capability. The advantage of Python beam
modules is that they can be created quickly and do not need to be
compiled to be invoked by the pyAlps simulator. This provides a
versatile tool for scientific experimentation.

Figure 1. Physics components can be written in any of the
languages supported by Babel. Components written in
Python, for example, can be invoked without recompiling to
rapidly test new algorithms.

4.2.2 Lessons Learned

Creating new modules was not as difficult as building the
components created from legacy code and linking them together.
Thisis due largely to the fact that new beam modules are designed
and written specifically for the component system. Python
modules are particularly easy to write and invoke from the Python
script. Perhaps the only difficulty in adopting this approach was
learning to use Babel arrays within Fortran in order to pass them
to the component layer on the client side. Arrays must be passed
back and forth to client and server in a language independent
fashion and this is accomplished by requiring the creation of Babel
arraysin all user code.

5. Discussion

Severd different approaches are available today to build language
independent components that can be reused in multiple
applications, used to assemble complex multi-physics simulators
from pre-built software, and run simulation codes from a scripting
language such as Python. Babel is atool that offers certain unique
features if those features are required, including a powerful array
syntax, support for complex numbers, and parallel computing.
The price for this capability is a need for careful attention to
compiler options for all codes that must interoperate and the need
to learn Babel data structures and the Babel scientific interface
definition language. If Babel’s unique features are required, then
thisis a price that has to be paid, for there are few other options
at thistime that provide all these features.
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